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Abstract. Far-from-equilibrium models of interacting particles in one dimension are used as a basis for
modelling the stock-market fluctuations. Particle types and their positions are interpreted as buy and
sel orders placed on a price axis in the order book. We revisit some modifications of well-known models,
starting with the Bak-Paczuski-Shubik model. We look at the four decades old Stigler model and investigate
its variants. One of them is the simplified version of the Genoa artificial market. The list of studied models
is completed by the models of Maslov and Daniels et al. Generically, in all cases we compare the return
distribution, absolute return autocorrelation and the value of the Hurst exponent. It turns out that none of
the models reproduces satisfactorily all the empirical data, but the most promising candidates for further
development are the Genoa artificial market and the Maslov model with moderate order evaporation.

PACS. 89.65.-s Social and economic systems – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The order book is the central notion in the stock market.
People willing to buy or sell express their desire in well-
specified orders and the authority of the stock exchange
logs all the orders in a list, where they wait until they are
either satisfied (executed) or cancelled. The visible part
of the stock market dynamics, i.e. the complex movement
of the price, is rooted in the detailed and mostly invisible
processes happening within the order book. Anyone who
wants to study seriously the stock market fluctuations,
must pay attention to the dynamics of the order book.

There are several reasons why physicists may and
should embark on such study. First, the discipline of
Econophysics is now established and accepted with decent
respect within the Physics community [1–4]. But even if
the study of economic phenomena by the tools of physics
were a bare empty bubble (which is not!, the author be-
lieves) to be broken into pieces, the study of the order
book itself may remain one of the shards of value. (An-
other one may be the Minority Game [5].) Indeed, the
second motivation to spend some effort here is that the or-
der book is a genuinely one-dimensional non-equilibrium
system with complex dynamics. It abounds with rich phe-
nomena and poses a serious intellectual challenge, which
may provoke development of new tools in one-dimensional
non-equilibrium physics.
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The most simplified view of an order book may be
the following. The orders are immobile particles of two
kinds, A (for asks, i.e. orders to sell), and B (for bids, i.e.
orders to buy), residing on a line of price (or logarithm
of price, if more convenient). All bids are always on the
left of all asks. The actual price lies somewhere between
(and included) the highest bid and the lowest ask. The
interval between the two is the spread and it is one of the
key quantities observed in the order book. Besides these
limit orders, waiting for the future in the order book, also
market orders arrive, which buy or sell immediately at
any price available in the market. Thus, the market orders
provide liquidity.

As we already said, the tip of the order-book ice-
berg is the price. All order-book models must be con-
fronted with what is known about the price fluctuations.
These stylised facts are now very well established [6–9]. To
quote here only those which we shall be faced later, the
price movements are generically characterised by a power-
law tail in return distribution, with exponent 1 + α � 4,
power-law autocorrelation of volatility, with exponent
ranging between 0.3 to 0.5, anomalous Hurst exponent
H � 2/3, measured either directly in the so-called Hurst
plot, or as a by-product of another essential feature of
the price fluctuations, which is the scaling. It must be
noted, though, that the scaling holds satisfactorily only for
not too long time separations. At larger times, the grad-
ual crossover to Gaussian shape of return distribution is
observed. This feature is well reproduced in multifractal
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stochastic models (from many works in this direction see
e.g. [10–13]). However, we must state from the beginning,
that explanation of multifractality and other subtle fea-
tures of the stock-market fluctuations [14,15], goes beyond
the scope of this paper.

Let us mention at least some of the special features
found empirically in order books. The literature is indeed
very ample [16–41]. The first thing we may ask is the av-
erage order book profile, i.e. the average number of orders
existing in given moment at given distance form the cur-
rent price. It was found that it has sharp maximum very
close to, but away from, the price [18,26,27]. The decrease
at large distances seems to be a power law with exponent
�2 [26,27], but the form of the increase between the price
and the peak is not so clear.

Related information is contained in the price impact
function, which says how much the price moves when an
order of a specific volume arrives. In first approximation,
we consider the virtual impact function, obtained by sim-
ple integration of the order book profile from the current
price to the new, shifted price. Beyond the maximum,
the profile decreases and therefore the virtual impact is
a convex function [17,18,24]. The striking surprise in the
empirical study of order books is, that the actual price
impact is much smaller, and moreover, it is a concave,
rather than convex, function of volume [24]. The form of
the price impact was studied intensively [20,32–38], yet a
controversy persist, whether it can be better fitted on a
square root (a qualitative theoretical argument for this fit
can be found in [42]), a power with exponent <0.5 or on
a logarithm.

The incoming orders have various volumes and it turns
out that they are power-law distributed [17]. For the mar-
ket orders, the exponent is �1.4, while for the limit orders
it has higher value �2. The limit orders are deposited at
various distances from the current price and also here the
distribution follows a power law [26,27,31,39], although
the value of the exponent reported differs rather widely
(�1.5 to �2.5) from one study to another. The limit or-
ders are eventually either satisfied or cancelled. The time
they spend within the order book is again power-law dis-
tributed [18,19,43] with exponent �2.1 for cancellations
and �1.5 for satisfactions.

There were attempts to explain some of the properties
of price fluctuations as direct consequences of the empiri-
cally found statistics of order books. In references [20,44]
the power-law tail in return distribution is related to the
specific square-root form of the impact function com-
bined with power-law distribution of order volumes. On
the other hand, reference [34] shows that the distribution
of returns copies the distribution of first gap (the distance
between best and second best order – where “best” means
“lowest” for asks and “highest” for bids). It was also found
that the width of the spread is distributed as power law,
with exponent �4 [22], which is essentially the same value
as the exponent for the distribution of returns. The discus-
sion remained somewhat open [21,41], but we believe that
the properties of the price fluctuations cannot be deduced
entirely from the statistics of the order book. For example

the difference between the virtual and actual price impact
suggests that the order book reacts quickly to incoming or-
ders and reorganises itself accordingly. Therefore, without
detailed dynamical information on the movements deep
inside the book we cannot hope for explanation of the
dynamics of the price.

2 Existing models

There is no space here for an exhaustive review of the
order-book modelling, not to speak of other types of stock-
market models. We select here only a few models we shall
build upon in the later sections and quote only a part of
the literature. We apologise for unavoidable omissions, not
due to underestimation of the work of others, but dictated
by reasonable brevity of this study.

2.1 Stigler

To our best knowledge, the first numerical model of the
order book and the first computer simulation ever in eco-
nomics was the work of Stigler [45]. The model is strikingly
simple. There are only limit orders of unit volume and
they are supplied randomly into the book within a fixed
allowed interval of price. If the new order is e.g. a bid and
there is an ask at lower price, then the bid is matched
with the lowest ask and both of them are removed. If the
bid falls lower than the lowest ask, it is stored in the book
and waits there.

From this example we understand, why the order-book
models are often called “zero-intelligence” models. Indeed,
there is no space for strategic choice of the agents and
the people may be very well replaced by random number
generators. It is interesting to note that experiments with
human versus machine trading were performed [46], which
found as much efficiency in “zero-intelligence” machines as
in “rational” people (graduate students of business).

2.2 Bak, Paczuski, and Shubik

Another model, very simple to formulate but difficult
to solve, was introduced by Bak, Paczuski, and Shubik
(BPS) [47]. On a line representing the price axis, two kinds
of particles are placed. The first kind, denoted A (ask),
corresponds to sell orders, while the second, B (bid), cor-
responds to buy orders. The position of the particle is the
price at which the order is to be satisfied. A trade can
occur only when two particles of opposite type meet. If
that happens, the orders are satisfied and the particles
are removed from the system. This can be described as
annihilation reaction A + B → ∅. It is evident that all B
particles must lie on the left with respect to all A particles.
The particles diffuse freely and in order to keep their con-
centration constant on average, new orders are inserted
from the left (B type) and from the right (A type). The
whole picture of this order-book model is therefore identi-
cal to the two-species diffusion-annihilation process. The
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changes in the price are mapped on the movement of the
reaction front.

Many analytical results are known for this model. Most
importantly, the Hurst exponent can be calculated ex-
actly [48–51] and the result is H = 1/4. This value is
well below the empirically established value H � 2/3.

Several modifications of the bare reaction-diffusion
process were introduced [47] to remedy some of the short-
comings of the model. The simplest one is to postulate
a drift of articles towards the current price. This fea-
ture mimics the fact that in real order books the orders
are placed close to the current price. It also suppresses
the rather unnatural assumption of free diffusion of or-
ders. However, the measured Hurst exponent remains to
be H = 1/4 as before.

More important modification consists in a kind of
“urn” process. The new orders are placed close to already
existing ones, thus mimicking certain level of “copying” or
“herding” mechanism, which is surely present in the real-
world price dynamics. In this case the Hurst exponent is
higher and in fact very close to the random walk value,
H � 1/2.

The diffusion constant of the orders can also be cou-
pled to the past volatility, introducing a positive feedback
effect. This way the Hurst exponent can be enhanced up
to the level consistent with the empirical value. In this
case, scaling was observed in the distribution of returns
with Hurst exponent H � 0.65.

2.3 Genoa market model

The diffusion of orders contradicts reality. Indeed, orders
can be placed into the order book, and later either can-
celled or satisfied, but change in price is very uncommon.
It is therefore wise to return back to Stigler’s immobile
orders but to make his model more realistic.

Rather involved modification of the Stigler model ap-
peared much later under the name of Genoa artificial mar-
ket [52–57]. The model contains many ingredients and is
therefore very plastic.

Again, there are only limit orders and the liquidity
is assured by non-empty intersection of intervals, where
the bids and asks, respectively, are deposited. In prac-
tical implementation, the probability of order placement
was Gaussian, with the centre shifted slightly above the
current price for asks and slightly below for the bids. The
width of the Gaussians was also related to the past volatil-
ity, thus introducing a feedback. Note that essentially the
same feedback was introduced already in the BPS model.
The price of the contract was calculated according to
demand-offer balance. There was also a herding of agents
in play, in the spirit of the Cont-Bouchaud model [58]. The
main result to interest us here was the power-law tail of
the return distribution, with very realistic value of the ex-
ponent. However, it was not at all clear which of the many
ingredients of the model is responsible for the appearance
of the power-law tail.

2.4 Maslov model

To appreciate the crucial role of the market orders, Maslov
introduced a model [59], in which the bids are deposited
always on the left and asks on the right from the current
price. The limit orders never meet each other. The ex-
ecution of the orders is mediated by the market orders,
annihilating the highest bid or lowest ask, depending on
the type of the market order.

The Maslov model has several appealing features. Es-
pecially, the return distribution characterised by exponent
1+α � 3 seems to be close to the empirically found power
law. The scaling in return distribution is clearly seen as
well as the volatility clustering manifested by power-law
decay of the autocorrelation of absolute returns. However,
the Hurst exponent is 1/4 as in the BPS model, which
is bad news. Maslov model was treated analytically in a
kind of mean-field approximation [60]. Unfortunately, the
exponent α = 1 found there disagrees with the simula-
tions. Later, the reason for this difference was identified
in the assumption of uniform density of orders on either
of the sides of the price. Taking the density zero at the
current price and linearly increasing on both the ask and
bid side, the exponent becomes α = 2, in agreement with
the numerics [61].

2.5 Models with uniform deposition

The Maslov model is still very idealised. The most impor-
tant difference from real situation is the absence of cancel-
lations. In real order books the orders can be scratched, if
their owners think that they waited too long for their pa-
tience. The group of Farmer and others introduced several
variants of models with cancellation (“evaporation”) of or-
ders [62–65]. Another fundamental feature which makes
these models different from the Maslov model is that the
orders are deposited uniformly within their allowed range,
i.e. bids from the current price downwards up to a pre-
scribed lower bound and equivalently for the asks.

The order book profile, price impact and many related
properties were studied very thoroughly and their depen-
dence on the rates of thee processes involved was clari-
fied. An important step forward was the analytical study
performed in [62]. Two complementary “mean-field” ap-
proaches were applied, achieving quite good agreement
with the simulations. The first approach calculates the
average density of orders as a continuous function, ne-
glecting the fluctuations. The other approach represents
the state of the order book by intervals between individ-
ual orders, assuming that at most one order can be present
on one site (a kind of exclusion principle). The approxi-
mation consists in neglecting the correlations between the
lengths of the intervals.

This line of research was recently pushed forward in
and important paper by Mike and Farmer [66]. A scheme,
which was given very fitting name “empirical model” was
proposed, which incorporates several basic empirical facts
on the order flow dynamics, namely the distribution of dis-
tances, from the best price, where the orders are placed;
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the long memory in the signs of the orders; the cancellation
probability, depending on the position of the order. Includ-
ing these empirical ingredients into the Farmer model, an
excellent agreement with other empirical findings was ob-
served, including the return and spread distributions. The
importance of that work, at least from our point of view,
consists in observation that the most tangible feature of
the price fluctuation, the return distribution, is in fact
a secondary manifestation of more basic and yet unex-
plained features. These are the features which enter the
model of [66] as empirical input.

In our work, we address a less ambitious but more
fundamental question. What will be the fluctuation prop-
erties of these models without assuming anything special
about order flow? We shall see that in many aspects the
answer is disappointing in the sense that the results are of-
ten far from reality. This means that the inputs of [66] are
essential. On the other hand, we can hardly be satisfied
until we detect the causes behind the empirical ingredients
of [66].

2.6 Other approaches

A rather phenomenological model was simulated in [26].
The profile of the order book was successfully explained
assuming power-law distribution of placement distances
from the current price.

In fact, the crucial role of the evaporation of orders was
first noticed in the work of Challet and Stinchcombe [18].
The new limit orders were deposited close to the price,
with standard deviation which was linearly coupled with
the width of the spread. The evaporation caused a clearly
visible crossover from Hurst exponent H = 1/4 at short
time distances to the random-walk value H = 1/2 at larger
times. This class of models was investigated in depth sub-
sequently [19,67,68]. In a related development, a version
of asymmetric exclusion model [69] was adapted as an
order-book model [70]. The two crucial ingredients are the
(biased) diffusion of particles (orders), returning some-
what back to the BPS model, and the exclusion princi-
ple, allowing at most one order at one site. It also forbids
“skipping” of particles, so each order represents an obsta-
cle for the diffusion of others. Price is represented by the
particle of a special type. Mapping to the exactly soluble
asymmetric exclusion model gives the precise value of the
Hurst exponent H = 2/3, nicely coinciding with reality.
One must remember, though, that the price for this result
is the unrealistic assumption of diffusing orders. Moreover,
even if we accepted the view that removal and immediate
placement of an order not far from the original position
may be effectively described as diffusion, why then the
particles are not allowed to overtake each other? We con-
sider that feature very far from reality.

Let us only list some other works we consider relevant
for order-book modelling [71–76]. Schematic models, like
the Interacting Gaps model [77,78], may also bring some,
however limited, insight. Despite continuing effort of many
groups performing empirical analyses as well as theoret-
ical studies, the true dynamics of the order book is far

from being fully understood. On one side, the trading in
the stock market is much more intricate than mere play
of limit and market orders. There are many more types of
them, sometimes rather complicated. At the same time,
it becomes more and more evident that assuming “zero-
intelligence” players misses some substantial processes un-
der way in the stock market. Strategic thinking cannot
be avoided without essential loss. This brings us close to
our last remark. All the models mentioned in this sec-
tion are appropriate only to those markets, which operate
without an official market maker. In presence of a mar-
ket maker, the orders do not interact individually, but
in smaller or larger chunks. One is tempted to devise a
“zero-intelligence” model with a market maker, but there
is perhaps a wiser path to follow. We have in mind a com-
bination of order-book models with Minority Game. The
latter represents an antipole to “zero-intelligence” order-
book models and amalgamating the two opposites may
prove fruitful.

In this work we shall not go thus far. Our aim is rather
to clarify the dark places in the ensemble of existing order-
book models. Performing new simulations for several of
these models in parallel, we hope to shed some light on
the the usefulness and the limitations of them.

3 New simulations

Here we present our new results of numerical simulations
of the models sketched above. Some of the data aim at
improving the results already present in the literature, but
mostly we try to clarify aspects not studied before. We also
used the same methodology in analysing the simulations
for all models, in order to make comparable statements
for each of the models under scrutiny.

3.1 Bak-Paczuski-Shubik model

The first model to study is the Bak-Paczuski-Shubik
(BPS) model. As we already explained, we have two types
of diffusing particles, called A and B. There are N par-
ticles of each type, i.e. total 2N particles placed at the
segment of length L. The particles can occupy integer po-
sitions from the set {1, 2, . . . , L}. In one update step we
choose one particle and change its position as c′i = ci ± 1
(there is no bias, so both signs of the change have the
same probability), on condition that the new position
stays within the allowed interval, 1 ≤ c′i ≤ L. We use
the convention that the time advances by 1/(2N) in one
step. If the new site was empty or there was already an-
other particle of the same type at the new position, noth-
ing more happens an the update is completed. We set
ci(t + 1/(2N)) = c′i and ck(t + 1/(2N)) = ck(t), k �= i On
the other hand, if the new site is occupied by a particle
of opposite type, say, particle j, so that cj(t) = c′i, then
the two particles annihilate. To keep the number of parti-
cles constant, we immediately supply two new particles at
opposite edges of the allowed segment. E.g. if i was type



F. Slanina: Order-book models 229

t

x

520051005000

20

15

10

5

0

Fig. 1. Example of the evolution of the Bak-Paczuski-Shubik model. Triangles up (�) denote positions of bids, triangles down
(�) mark the asks. The full line traces the evolution of the price, showing jumps where transactions occurred. There are N = 5
particles of each type on the segment of length L = 20.
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Fig. 2. Distribution of inter-event times in BPS model. On
the segment of length L = 500, there are N = 200 particles of
each kind. In the inset, average return occurring after waiting
time ∆t, for the same values of L and N . The line is the power
∝ (∆t)0.4.

B and j was type A, the update is ci(t + 1/(2N)) = 1,
cj(t + 1/(2N)) = L and ck(t + 1/(2N)) = ck(t), k �= i, j.

The annihilation corresponds to an elementary trans-
action. The price set in this deal is just the position
where the annihilation took place, x(t + 1/(2N)) = c′i. If
the transaction did not occur, the price stays unchanged,
x(t+1/(2N)) = x(t). This completes the definition of the
variant of the BPS model simulated here.

In Figure 1 we can see how the typical configuration of
orders evolves in time. There are rather long periods where
the price does not change, but the positions of orders are
mixed substantially. We shall first look at these waiting
times between consecutive trades. In Figure 2 we can see
the (cumulative) probability distribution of them. It is
evident that the distribution is exponential, or very close
to it, so we can consider the sequence of trade times at
least approximately as Poisson point process.

The most desired quantity is the one-trade return dis-
tribution. If ti is the time of ith trade, we define r(ti) =
x(ti+1)− x(ti) and in Figure 3 we plot the distribution of
the absolute returns P (r) = 〈δ(r − |r(ti)|)〉 in stationary
state, for several sizes L and particle numbers N . We find
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Fig. 3. Distribution of one-transaction returns in BPS model,
rescaled by the factor s = N1/2L−1/4. The parameters are L =
250, N = 50 (�); L = 500, N = 200 (◦); L = 250, N = 250
(�). The line is the dependence ∝ exp

(−r/(50s)−(r/(34s))2
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that the distribution collapses onto a single curve when
we rescale the data by the factor

s = N1/2L−1/4 . (1)

We then find

P (r) =
1
s

F
(r

s

)
(2)

and the scaling function decays faster than an exponential.
The fit of the type F (x) � A exp(−ax− bx2) seems to be
fairly satisfactory. Evidently, this distribution is very far
from the fat tails observed empirically. It is also interesting
to see how the one-trade return depends on the waiting
time before the trade. We measure the conditional average
of the return

〈r|∆t〉 =
∑

i |r(ti)| δ(ti − ti−1 − ∆t)
∑

i δ(ti − ti−1 − ∆t)
(3)

and find (see the inset in Fig. 2) that it increases slowly
as a power law 〈r|∆t〉 ∼ (∆t)0.4.
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Diffusion of the price is quantified by the Hurst plot.
Usually we calculate the quantity

R(∆t) =

〈
maxt′,t′′∈(t,t+∆t)

∣
∣x(t′) − x(t′′)

∣
∣

√〈
r2(t′)

〉
t′ −

〈
r(t)

〉2

t′

〉

t

(4)

where the average 〈. . .〉t′ is taken over interval t′ ∈ (t, t +
∆t) while the average 〈. . .〉t extends over all times. The
time-dependent normalisation in the denominator of (4)
accounts for temporal variations of the volatility.

However, especially in BPS model the measure (4) is
inconvenient as it does not cover properly the time scales
below the typical waiting time. We use instead a simplified
and also frequently used quantity

〈|∆x|max

〉
=

〈
max

t′,t′′∈(t,t+∆t)

∣∣x(t′) − x(t′′)
∣∣
〉

t
. (5)

Both (4) and (5) are expected to share the same asymp-
totic behaviour for ∆t → ∞, i.e. R(∆t) ∼ 〈|∆x|max

〉 ∼
(∆t)H with Hurst exponent H .

The results for BPS model are shown in Figure 4. We
can appreciate there how difficult it is to actually observe
the value H = 1/4 predicted by the theory. Relatively long
“short-time” regime seen in Figure 4 is characterised by
H = 1, which corresponds to ballistic, rather than diffu-
sive, movement of the price. In this regime, the time scale
is shorter than the average inter-event time, so there is
typically at most one transaction. The transaction times
follow approximately the Poisson point process, so the
probability that one transaction occur during time ∆t is,
for short times, proportional to ∆t. Assuming that the
price change, if it occurs, has certain typical size, the scale
of the average price change should be also proportional to
∆t. Hence the ballistic behaviour H = 1 seen in the Hurst
plot. Note, however, that this argument needs some refine-
ment, because, as we have seen in Figure 2, longer waiting
times imply larger price jumps afterwards. Nevertheless,
we believe that the general line of the argument is true.

The behaviour changes when ∆t becomes comparable
to the average inter-event time. The most often encoun-
tered result is represented by triangles in Figure 4. At

scales larger than the average inter-event time the quan-
tity

〈|∆x|max

〉
saturates, yielding H = 0. It is easy to un-

derstand why it must be so. If the density of particles is
large enough, the configuration of the order book can be
described by average concentrations ρA(y) and ρB(y) of
particles A and B, respectively. The variable y ∈ (0, L)
measures the position on the price axis. It is easy to
find that neglecting the fluctuations in the order density
the solution of the BPS model trivialises into ρB(y) =
8N
L2 (L/2− y)θ(L/2− y), ρA(y) = 8N

L2 (y − L/2)θ(y −L/2).
So, in absence of fluctuations the price is pinned in the
exact middle of the allowed interval. This is just the sat-
uration regime H = 0.

To see the theoretically predicted Hurst exponent H =
1/4 we must find a time window between the ballistic and
pinned regime. This is often very narrow, if it exists at all,
as testified in Figure 4 by the data for L = 250 and N =
50. Only for large enough size with small enough density of
orders the fluctuation regime H = 1/4 is observable. (Note
that in the finite-size analysis the number of orders must
scale as N ∝ L2 with the length of the allowed interval.)
In Figure 4 we can see an example for L = N = 2 × 104,
where such time window is visible.

The difficulty to observe the desired regime in BPS
model contrasts with the way the exponent H = 1/4 was
derived analytically [48,49]. In these works the two reac-
tants occupy initially the positive and negative half-lines,
respectively. Then, they are let to diffuse and react. Anni-
hilated particles are not replaced. Therefore, the reaction
front spreads out indefinitely and we can observe a well
defined long-time regime characterised by the exponent
H = 1/4. (There is also a logarithmic factor there, but we
neglect it in this discussion.) On the contrary, in BPS the
long-time regime has always H = 0.

3.2 Stigler model and its free variant

In Stigler model, we have again the allowed price range
{1, 2, . . . , L}, where the orders can be placed. There can
be at most N orders total. If, at time t, there is still the
order deposited at time t − N , it is removed. Then, we
deposit a new order. We decide whether it will be a bid
or an ask (with equal probability) and choose randomly,
with uniform distribution, its position within the allowed
price range. A transaction may follow. If the new order is
e.g. a bid placed at position ct and the lowest ask is at
position cA ≤ ct, then the new price is set to xt = cA and
both the new bid at ct and the old lowest ask at cA are
removed. If cA > ct, the price does not change, xt = xt−1

and the new bid stays in the order book. (Symmetrically
it holds for depositing an ask.)

In Figure 5 we show an example of the typical time
sequence of price xt and one-step returns rt = xt − xt−1.
Qualitatively, we can guess that the fluctuations are far
from Gaussian, i.e. returns will not obey the normal dis-
tribution. Indeed, we can see in Figure 6 that for several
decades the distribution falls off slowly as a power with
small exponent, P (r) ∼ r−0.3 and then it is sharply cut off.
Indeed, the cutoff comes from the natural bound |rt| < L.
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Fig. 5. Example of the evolution of the Stigler model. In the upper panel, time dependence of the actual price; in the lower
panel, one-step returns. On the segment of length L = 5000 there are at most N = 5000 orders.
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Fig. 6. Distribution of one-step returns for Stigler model with
L = 5000 and N = 5000 (�) and for the free Stigler model
with N = 5000, s = 4000, and d = 104 (◦). The lines are
power laws ∝ r−0.3 (solid) and ∝ r−0.5 (dashed).

In the time series in Figure 5 we can also glimpse the
volatility clustering. To measure it quantitatively, we plot
in Figure 7 the autocorrelation of absolute returns

〈|rt rt−∆t|〉c = 〈|rt rt−∆t|〉 − 〈|rt|〉〈|rt−∆t|〉 . (6)

It decays as a power, but with rather large exponent,
〈|rt rt−∆t|〉c ∼ (∆t)−1.3. On the other hand, the returns
themselves are only short-time negatively correlated with
exponential decay, as can be seen in Figure 8.

These findings show that Stigler model is not a very
good candidate model for explaining the empirical facts.
However, it may well serve as a starting point for success-
ful construction of better models. The first limitation we
must remove is the fixed range of prices from 1 to L. A
severe consequence of this limitation is the saturation seen
in the Hurst plot (Fig. 13). In long time regime, the Hurst
exponent is obviously H = 0. To cure this problem we
introduce a “free” variant of the Stigler model. It may be
also considered as a precursor of the Genoa market model,
to be studied in the next section.
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Fig. 7. Autocorrelation of absolute returns for the Stigler
model with L = 5000 and N = 5000 (�) and for the free
Stigler model with N = 5000, s = 4000, and d = 104 (◦).
The lines are power laws ∝ (∆t)−1.3 (solid) and ∝ (∆t)−1.2

(dashed). In order to have all data in the same frame, we in-
troduced an auxiliary factor a = 10 (◦) and a = 104 (�).
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Fig. 8. Autocorrelation of returns for the Stigler model with
L = 5000 and N = 5000 (�) and for the free Stigler model
with N = 5000, s = 4000, and d = 104 (◦). In order to have
all data in the same frame, we introduced an auxiliary factor
a = 100 (◦) and a = 104 (�).
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The price axis is now extended to all integer num-
bers. Of course, the position on this axis must be now
interpreted as logarithm of price, rather than price it-
self. Nonetheless, for brevity we shall speak of “price”
also in this case. The orders are again deposited ran-
domly within an allowed range, but now the range de-
pends on the actual position of the price xt. We introduce
two integer parameters, the width of the allowed interval
d and the shift s of the interval’s centre with respect to
the current price. Denote ct the order issued at time t.
If it is a bid, it is deposited uniformly within the range
xt−s−d/2 < ct ≤ xt−s+d/2, while for an ask the range
is xt + s − d/2 ≤ ct < xt + s + d/2. Of course, in order
to have any transactions at all, we must have d ≥ 2s. As
with the Stigler model, the orders older than N steps are
removed.

In spite of the change in the deposition rules, the ba-
sic features of the free Stigler model remain very similar
to those of the original variant. In Figure 6 we can see
that the return distribution exhibits slow power-law de-
cay P (r) ∼ r−0.5 with a sharp cutoff at large returns.
The exponent �0.5 is larger than in the Stigler model,
but still remains very much below the empirical value �4.
The autocorrelation of absolute returns (see Fig. 7) de-
cays as a similar power law 〈|rt rt−∆t|〉c ∼ (∆t)−1.2. In
addition, a peak in the autocorrelation function, merely
visible in Stigler model, becomes quite pronounced here
and is shifted to larger times, about (∆t)peak � 20. This
indicates some quasi-periodic pattern in the time series of
the volatility, related probably to a typical waiting time
between subsequent trades. Indeed, we found that the
waiting times are exponentially distributed, and for the
parameters of Figure 7 the average waiting time is about
�11. As for the autocorrelation of returns, it decays expo-
nentially again, albeit more slowly, as shown in Figure 8.

The main difference observed, compared to the origi-
nal Stigler model, is shown in the Hurst plot, Figure 13.
At shorter times, there is a tendency to saturation, as in
the Stigler model, but at larger times the purely diffusive
regime with H = 1/2 prevails. We can attribute these
results the following interpretation. The orders present in
the order book form a “bunch” located somewhere around
the current price. Orders too far from the price are usually
cancelled after their lifetime (equal to N) expires. Hence
the localisation around the price. Now, while in the Stigler
model the bunch of orders is imprisoned between 1 and L,
in the free Stigler model the bunch can wander around,
following the price changes. The value H = 1/2 shows that
the movements of the bunch as a whole can be described
as an ordinary random walk.

3.3 Genoa market model

Both in original and free Stigler model, the agents behind
the scene have truly zero intelligence. At most, they look
at the price in this instant and place orders at some dis-
tance from it, but the distance is not affected neither by
the present nor the past sequence of prices. However, it is
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Fig. 9. Return distribution in the Genoa market model. Max-
imum number of orders is N = 1000, width to shift ratio is
b = 7. The feedback factor is g = 51 (�), 52 (◦), and 52.36
(�). The three solid lines are power laws ∝ r−1−α with the ex-
ponents (from left to right) α = 5.5, 2.5, and 1.2. The dashed
line is the power ∝ r−0.5. In the inset, the dependence of the
tail exponent α on the feedback factor g. The line is the de-
pendence (α−1) ∝ (52.4− g) indicating that the critical value
lies at gc � 52.4.

reasonable to expect that the agents react to the fluctua-
tions observed in the past. The simplest feedback mecha-
nism may be that the distance to place an order is propor-
tional to the volatility measured during some time period
in the past. This idea was already applied in one of the
variants of the BPS model [47] and lies in the basis of the
Genoa artificial market [52]. What we shall call “Genoa
market model” from now on, is in fact very reduced ver-
sion of the complex simulation scheme of reference [52].
We believe, however, that we retain the most significant
ingredients.

We must first define a convenient measure of instan-
taneous volatility. Averaging absolute price changes with
an exponentially decaying kernel

vt = λ

∞∑

t′=0

(1 − λ)t′ |xt−t′ − xt−t′−1| . (7)

turns out to be a good choice. We use the value λ = 10−3

throughout the simulations. The orders will be placed on
integer positions within an interval determined by the
width and the shift from actual price, as in the free Stigler
model, but now these two parameters are time-dependent.
Their ratio will be held constant and both will expand as
the volatility vt will grow. So, the prescription will be

dt = �g vt�
st =

⌊dt

b

⌋
(8)

and the constants b and g, besides the maximum number
of orders (i.e. maximum lifetime of an order) N constitute
the parameters of the model. In order that we have any
transactions at all, we impose the bound b > 2.

The feedback mechanism we apply makes significant
difference in all aspects of the model. Let us look first
at the return distribution. In Figure 9 we can see how
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Fig. 10. Genoa market model. Dependence of the average
volatility on the feedback factor g. The parameters are N =
1000, b = 7. The lines with arrows indicate the hysteresis curve,
the false signature of an apparent first-order transition. In the
inset, the same data but plotted differently. The line is the de-
pendence ∝ (52.4 − g), suggesting the critical value gc � 52.4.

it changes when we tune the parameter g. Generically, a
power-law tail P (r) ∼ r−1−α develops, with an exponent
strongly depending on g. The larger g, the smaller the ex-
ponent, until for some critical value g = gc it approaches
the limit α = 1. Beyond that point, the average return,
i.e. also the stationary value of the average volatility vt di-
verges. This may be regarded as a kind of phase transition.
It is also worth noting that for low returns there is an inter-
val where another power law holds, with 1+α � 0.5. This
is the remainder of the behaviour characteristic for the
free Stigler model, the parent of the Genoa stock market.

We can look at this behaviour from another as-
pect when we directly calculate the time average 〈v〉 =
limT→∞ 1

T

∑T
t=0 vt. Its dependence on g is shown in Fig-

ure 10. This plot requires some explanation. The actual
implementation of the algorithm prevents the average
volatility from diverging. Instead, it reaches a relatively
large value above 108. So, all points beyond this level
should be considered as effectively infinite. Moreover, in
Figure 10 we can see a sign of bistability, or hysteresis,
which is at first sight a signature of a first-order phase
transition. However, a more careful analysis with varying
N shows that the presence of an apparent hysteresis curve
is misleading. Actually, it is a subtle finite-size effect and
the phase transition is continuous (i.e. second order).

We can see that the transition points found indepen-
dently in Figures 9 and 10 are consistent, so it is indeed a
single transition with two aspects. In fact, the coincidence
between Figures 9 and 10 means equality of time and “en-
semble” averages, i.e. ergodicity of the model dynamics.

In Figure 11 we show a phase diagram of the model,
indicating the dependence of the critical point gc on the
parameter b. When b approaches its lower limit equal to 2
(note that there are no trades for b < 2), the critical value
gc diverges. It comes as no big surprise, because trades
became more rare when b → 2 and therefore the volatility
diminishes. This allows the feedback measured by g to be
stronger without divergence in the realised average volatil-
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Fig. 11. Phase diagram of the Genoa market model for N =
1000. Inverse of the critical value gc of the feedback factor,
deduced from the simulations, depends on the width to shift
ratio b. The phase transition is absent in the (trivial) region
b < 2, indicated by dashed line.
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Fig. 12. Autocorrelation of absolute returns in the Genoa mar-
ket model, for parameters N = 1000, b = 7, g = 52. In the
inset, the same data are plotted in linear-logarithmic scale.

ity. The phase diagram depends on the maximum number
of orders N , but we found that the dependence is very
weak and never changes the qualitative look of the phase
diagram. The reason for this is that for large N the ac-
tual number of orders present in the system is maintained
mainly by the annihilation by other orders and the frac-
tion of orders which live long enough to be discarded at
the end of their lifetime is very small. In other words, the
average number of orders in the system 〈Npresent〉 grows
extremely slowly with N .

To complete the study of the Genoa market model, we
show in Figure 12 the autocorrelations and in Figure 13
the Hurst plot. Contrary to both the Stigler model and its
free variant, the autocorrelation of absolute returns decays
as a clear exponential, although the characteristic time is
extremely long. As for the Hurst exponent, is is equal to
H = 1/2, in accord with the behaviour of the free Stigler
model. In both Genoa and free Stigler models the long-
time behaviour of R(∆t) is dominated by the diffusion of
the bunch of orders as a whole. What makes difference
between the two is the dynamics within the bunch, but
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Fig. 13. Comparison of Hurst plots for Stigler model with
parameters L = 5000, N = 5000 (�), free Stigler model with
N = 5000, s = 4000, d = 104 (◦), and Genoa market model
with N = 1000, b = 7, g = 51.6 (�). The line is the power
∝ (∆t)1/2.

this is not visible in the Hurst plot. Note also that for the
parameters used in Figure 13 the regime with H = 1/2
starts at times �105. At such time scale the autocorrela-
tions are already damped out, regardless the power-law de-
cay in free Stigler or the slow exponential decay in Genoa
models (compare Figs. 7 and 12).

3.4 Maslov model

So far, the models investigated did not distinguish be-
tween limit orders and market orders. The distinction was
only implicit. All bids placed below the lowest ask acted
effectively as limit orders, as well as the asks placed above
the highest bid. In the model of Maslov [59] the orders of
unit volume were issued at each step, being limit orders
or market orders with equal probability 1/2. The limit or-
ders were placed at close vicinity of the current price. Here
we add also the feature of order evaporation, as in [18].
Each order present in the book will have the same prob-
ability of being cancelled (evaporated). Therefore, we do
not take into account the age of the order, as we did in
various variants of the Stigler model.

We tune the speed of the evaporation by a parame-
ter q. For simpler terminology, we shall call it evaporation
probability. Actually, the probabilities of deposition, satis-
faction and evaporation event in one step of the evolution,
at time t, will be defined as, respectively,

W+dep
t =

1

2 + q
(

Nt

N
− 1

)

W−sat
t =

1 − q

2 + q
(

Nt

N
− 1

)

W−eva
t =

q Nt

N

2 + q
(

Nt

N
− 1

) (9)

where Nt is the actual number of orders in the book. The
parameter N controls the number of orders in the book

and again, to simplify the terminology, it will be called
average number of orders, although the actual value of
the average number of orders is slightly different (due to
the effect of fluctuations). If the evaporation probability is
zero, the parameter N becomes irrelevant for the dynam-
ics. Note that the three probabilities (9) change in time,
as the total number of orders Nt fluctuates.

The orders are placed at integer positions denoting the
(logarithm of the) price. Let xt be the price at time t and
NAt, NBt actual number of asks and bids, respectively,
with the total number of orders Nt = NAt + NBt.

In case deposition is selected to happen, according to
probabilities (9), we add an ask (NAt+1 = NAt+1) or a bid
(NBt+1 = NBt + 1) with equal probability. The position
of the new order is ct = xt +1, for the ask and ct = xt − 1
sign for the bid. The price remains unchanged, xt+1 = xt

because no transaction occurred.
The execution, or satisfaction, of an order happens al-

ways when a market order is issued, and there is a limit
order to match it. Again, sell and buy side are equivalent,
so they are selected with equal probability 1/2. Suppose a
sell order is issued and there is at least one bid, NBt > 0,
and cB is the position of the highest bid. Then, the new
price is xt+1 = cB, we update NBt+1 = NBt − 1 and
remove the order at cB from the book. Symmetrically it
holds for the buy order.

When the evaporation of an order is about to happen,
we select any of the existing orders with uniform probabil-
ity and remove it from the system. Note that removals of
a bid and an ask are not equiprobable, as we evaporate a
bid with probability NBt/Nt and an ask with probability
NAt/Nt.

We can see in Figure 14 the space-time diagram of
a typical evolution of the order book. The price “sows”
new orders along its fluctuating path, which are either
satisfied, as the price returns next to its original position,
or they vanish by evaporation. Longer price jumps occur
when the density of orders is low. Conversely, the price
becomes temporarily pinned, when it enters a region with
large density of orders.

Let us first revisit the results for the original Maslov
model without evaporation (q = 0). In Figure 15 we show
the distribution of returns at several time lags

P∆t(r) = 〈δ(r − |xt − xt−∆t|)〉 . (10)

We can see clearly the power-law tail P∆t(r) ∼ r−3, ob-
served first in [59]. The results can be also rescaled to
fall onto a single curve, P∆t(r) = 1

sF
(

r
s

)
as shown in

Figure 16. The dependence of the scaling factor s on the
time lag ∆t is shown in the inset of Figure 16 and we can
clearly see the power-law dependence s ∝ (∆t)1/4. Hence
we deduce the Hurst exponent of the price fluctuation pro-
cess H = 1/4. The same value of the Hurst exponent is
confirmed independently by drawing the Hurst plot, Fig-
ure 20.

The volatility clustering, measured by the autocorre-
lation of absolute returns, is shown in Figure 17. The
autocorrelations decay as a power law, similarly as in the
Stigler model, but now the exponent is significantly lower,
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Fig. 14. Example of the evolution of the Maslov model with evaporation. Each segment of a horizontal line corresponds to
one order, placed where the segment starts and executed or evaporated where the segment ends. The rugged line is the time
dependence of the actual price. Average number of orders is N = 100 and the probability of evaporation q = 0.05.
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Fig. 15. Distribution of returns in the Maslov model without
evaporation, at time lags ∆t = 1 (◦), 10 (�), 100 (�), 103

(•), 104 (�), and 105 (�). The line is the power ∝ r−3.
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Fig. 16. Rescaled distribution of returns in the Maslov model
without evaporation. The meaning of the symbols is the same
as in Figure 15. The line is the power ∝ r−3. In the inset we
plot the dependence of the scaling constant on the time lag.
The line is the power ∝ (∆t)1/4.

〈|rt rt−∆t|〉c ∼ (∆t)−0.5, which makes the behaviour much
more similar to empirical price sequences.

Now we investigate the effect of finite evaporation
probability, q > 0. In the distribution of one-step returns,
Figure 18, it leads to deformation of the original power-
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Fig. 17. Autocorrelation of absolute returns for the Maslov
model without evaporation (◦) and with evaporation proba-
bility q = 0.01 (�). Average number of orders is N = 1000.
The dashed line is the power ∝ (∆t)−0.5 and the solid line is
∝ (∆t)−0.62.

law dependence. At very small values of q, we observe
an effective increase of the power-law exponent, to values
1 + α = 4 and even more. This would sound fine, as this
is just the value reported in empirical studies. However,
a cutoff starts developing as well and when we increase q
further, the cutoff prevails and the power-law regime van-
ishes completely. Since the evaporation destroys the power
law, it is not surprising that the scaling also breaks down.
In Figure 19 we can see that no scaling can be seen, be-
cause at each time lag the shape of the graph is different.

While the return distribution changes substantially,
the absolute return autocorrelation remains nearly the
same. The decay follows again a power law, but the ex-
ponent is somewhat larger, 〈|rt rt−∆t|〉c ∼ (∆t)−0.62. The
long-time correlations are caused by the immobile orders
who sit within the book until the price finds its path back
to them. Evaporation removes some of the orders, thus
eroding the correlations. Quantitatively it results in sup-
pression of the correlation function.

Finally, we look at the Hurst plot, Figure 20. As men-
tioned already in [18], evaporation of orders induces the
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Fig. 18. Distribution of one-step returns in the Maslov model
with (�, �) and without (◦) evaporation. The evaporation
probability is q = 0.01 (�), 0.05 (�); the average number of
orders is N = 1000. The solid line is the power ∝ r−3, the
dashed line is ∝ r−4.
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Fig. 19. Distribution of returns in the Maslov model with
evaporation. The parameters are q = 0.05, N = 1000. The
lime lags are ∆t = 1 (◦), 10 (�), 100 (�), 103 (•), 104 (�),
and 105 (�).

crossover to purely diffusive behaviour, H = 1/2 at large
times. Interestingly, when we compare the quantity R(∆t)
at equal time difference for different values of q we can see
that larger evaporation probability actually suppresses the
diffusion. The Hurst exponent H = 1/2 remains univer-
sal, but the diffusion constant is lower for larger q. The
possible explanation is that the evaporation events go at
the expense of satisfaction events. Therefore, there are less
trades per unit of time, hence the slower diffusion of the
price.

We studied also another modification of the Maslov
model, where the evaporation of orders was implemented
in the sense of Stigler model. Instead of removing an arbi-
trarily chosen order with fixed probability, we track the
age of the orders and remove them if the age exceeds
certain fixed lifetime. We did not observe much differ-
ence compared to the variant with usual evaporation. The
Hurst plot looks much like that of Figure 20, showing
clear crossover from the short time H = 1/4 to long-time
H = 1/2 behaviour. Absolute returns autocorrelation de-
cays as a power with similar (slightly larger) exponent.
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Fig. 20. Hurst plot for the Maslov model without evaporation
(◦) and with evaporation probability q = 0.01 (�) and 0.05
(�). Average number of orders is N = 1000. The solid line is
the power ∝ (∆t)1/4, the dashed line is ∝ (∆t)1/2.

Somewhat larger difference can be seen in the return dis-
tribution. The finite lifetime of the orders leads to decrease
in the exponent of the power-law part, while the evapora-
tion causes its increase. Qualitatively, the cutoff at larger
returns seems more severe than in the case of evaporation,
although quantitative comparison is hardly possible. To
sum up, we consider the variant with finite lifetime farther
from the reality than the variant with simple evaporation.

3.5 Uniform deposition model

In Maslov model, the new orders are placed locally, at
distance 1 from the actual price. It could be possible to
fix another limit for the maximum distance, and indeed,
in the original work [59] this number was 5. There is little,
if any, effect of the precise value of this parameter. The
important thing is that the orders are never placed farther
than certain predefined limit.

In reality, however, the distribution of distances at
which the orders are placed is rather broad and decays
as a power law [26]. The mechanism responsible for this
power law is probably related to the optimisation of invest-
ments performed by agents working at widely dispersed
time horizons [39]. Actually it is reasonable to expect that
the distribution of time horizons and (related to it) dis-
tribution of distances is maintained by equilibration, so
that all agents expect just the same average gain, irre-
spectively of the time horizon on which they act. This
idea would certainly deserve better formalisation.

Instead of taking the empirical distribution of place-
ments as granted without deeper theoretical understand-
ing, we prefer to compare the localised deposition in
Maslov model with a complementary strategy applied in
the set of models investigated by Daniels, Farmer and
others [62–65]. Instead of keeping short distance from
the price, the orders are deposited with equal probabil-
ity at arbitrary distance. In this work, we adopt one of
the variants studied in [62] and within this paper we shall
call it Uniform Deposition Model (UDM).
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Fig. 21. Example of the evolution of the Uniform Deposition Model. Each segment of a horizontal line corresponds to one order.
The rugged line is the time dependence of the actual price. The width of the segment of allowed prices is L = 104. Average
number of orders is N = 100 and the evaporation probability q = 0.9.

In fact, the only difference with respect to the Maslov
model with evaporation, defined in Section 3.4 is that
we limit the price to a segment of length L and or-
ders are deposited uniformly on this segment. So, the or-
ders and price can assume integer position from the set
S = {−L/2,−L/2 + 1, . . . , L/2 − 2, L/2 − 1}. As in the
Maslov model, there are three classes of events, deposition,
order satisfaction, and evaporation. Their probabilities are
defined by the same formulae (9) as in the Maslov model.
When an order is to be deposited, we first look where is
the price xt. Then, select randomly a point ct from the set
S\{xt} and deposit an order there. If ct > xt the order be-
comes an ask, if ct < xt it is a bid. (We forbid depositing
exactly at the price position.) Although the probabilities
(9) look the same as in the Maslov model, we should note
that there is a big difference in the typical values of the
evaporation probability q. In Maslov model the orders are
clustered around the price and the evaporation is somehow
a complement or correction to the natural satisfaction of
the limit orders by incoming market orders. So, q is typ-
ically a small number compared to 1. On the contrary,
in UDM the evaporation is essential, because orders are
deposited in the whole allowed segment and ought to be
removed also from areas where the price rarely wanders.
Therefore, q is comparable to, although smaller than, one.
Very often, the simulations were performed in the regime
where 1 − q was much smaller than 1.

To see a typical situation, we plot in Figure 21 the
space-time chart of orders and price. We can see how the
price “crawls” through a see of orders and the configura-
tion of the orders changes substantially also very far from
the price and without being affected by its movement. Of
course, this is to be expected due to uniform deposition
rule. On the other hand, this is certainly not a realistic
feature.

We found fairly interesting, although absolutely unre-
alistic, the distribution of one-step returns, as shown in
Figures 22 and 23. The tail is characterised by power-
law decay P1(r) ∼ r−0.75 and the exponent, close to the
fraction 3/4, seems to be universal, irrespectively of the
parameters q and N . The value of the exponent is far

r

P
1(

r)

103 104 10510 1001

10−6

10−5

10−4

10−7

Fig. 22. Distribution of one-step returns in UDM. The pa-
rameters are L = 106, q = 0.9, and N = 104 (◦), 103 (�), and
100 (�). The line is the power ∝ r−0.75.
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Fig. 23. Distribution of one-step returns in UDM. The pa-
rameters are L = 106, N = 104, and q = 0.5 (�), 0.9 (�), 0.95
(◦), and 0.99 (�). The line is the power ∝ r−0.75.

below the empirical value, but the very fact of universal
behaviour in such reaction-deposition model calls for ex-
planation. We do not have any yet.

While the power law in the return distribution indi-
cates some scale-free behaviour at single time, we find no
sign of scaling when we compare the returns at different
time scales. We can see that in Figure 24. At longer lags
the power-law tail vanishes and the distribution becomes
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Fig. 24. Distribution of returns in UDM at different time lags.
The parameters are L = 106, N = 104, and q = 0.5. The time
lags are ∆t = 1 (◦), 10 (�), 100 (�), 103 (•), and 104 (�).
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Fig. 25. Autocorrelation of absolute returns in UDM. The
parameters are L = 105, q = 0.9; N = 103 (◦), and 100 (�).

uniform. This means that after long enough time the price
can jump arbitrarily from one position to another within
nearly all the allowed range, except the vicinity of the ex-
tremal points. In fact, the same behaviour was observed
also for long enough time lags in the Stigler model. Cer-
tainly, the origin of such behaviour is the very existence
of the limited price range, both in UDM and the Stigler
model.

Let us look on the volatility clustering now. In Fig-
ure 25 we show the autocorrelation of absolute returns.
the decay is rather slow, i.e. slower than exponential, but
at the same time it is faster than a power law. This be-
haviour is special to the Uniform Deposition Model.

Finally, in Figure 26 we show the Hurst plot. Again,
there is close similarity to the Stigler model in the sense
that there is no long-time diffusive regime but saturation
is observed instead. Only in the very short initial tran-
sient we observe ordinary diffusion-like behaviour charac-
terised by H = 1/2. It is unclear from our simulations
whether there is an intermediate time window in which a
non-trivial Hurst exponent (like the notorious H = 1/4)
would be observed.
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Fig. 26. Hurst plot for UDM. The parameters are L = 106;
q = 0.9 (◦, �), and 0.5 (�); N = 104 (◦, �) and 1000 (�).
The line is the power ∝ (∆t)1/2.

4 Conclusions

It is not easy to make a synoptic comparison of the whole
ensemble of models studied here. However, one easy con-
clusion can be drawn, that none of them reproduces sat-
isfactorily the reality. Most importantly, the empirically
observed Hurst exponent H � 0.6 is not found anywhere.
We can classify the diffusion behaviour into three main
types. The first and most trivial one is dominated by the
saturation, H = 0 and happens always when the price is
restricted by definition to an interval, like in the Stigler
and Uniform Deposition models. The same holds also for
the asymptotic regime of the BPS model, although in the
latter the interesting things happen at the intermediate
time scale, where H = 1/4. We do not exclude the pos-
sibility that also in UDM the intermediate times have
H = 1/4, but we were not able to make any conclusive
statement about that. The second type is characterised by
asymptotic sub-diffusion, with H = 1/4. Strictly speaking
this holds only for the Maslov model without evaporation.
The third and most frequent type of behaviour can be de-
scribed as ordinary diffusion (H = 1/2) at long times. The
initial transient regime may exhibit either H = 1/4, as in
the Maslov model with evaporation or with fixed finite
lifetime of orders, or it may instead show the tendency to
saturation, as in the free Stigler model and Genoa artificial
market model. It seems really difficult to design an order-
book model where super-diffusive behaviour (H > 1/2)
would arise naturally, without being put in by hand. We
cannot resist the temptation to compare this difficulty
with the situation in stochastic modelling by continuous-
time random walks [79]. There also, the sub-diffusive be-
haviour can be found easily, but the super-diffusive one
should be essentially forced.

The power-law tails in the return distribution seem to
work slightly better. When we set apart the BPS model,
where the tail decays even faster than exponentially, we
can distinguish the models where the exponent in the
power-law decay is far too low (α < 0), which comprises
Stigler model, free Stigler model and UDM, from the mod-
els, where the exponent lies close, although not always
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precisely at the empirical value. The latter group contains
the Genoa market model and the Maslov model with and
without evaporation. The best chance for success when
matched with the real data has the Genoa model, where
the exponent can be tuned by variation of the model pa-
rameters. On the other hand, it is a priori unclear, why
the parameter values should be this and not that. In the
Maslov model proper, the exponent is universal, α = 2.
Adding evaporation increases this value, so the agreement
with the data can be again tuned, in this case by chang-
ing the evaporation speed. However, evaporation induces
not only effective increase of the exponent, but also emer-
gence of a cutoff. In fact, we think that the change in ex-
ponent is only an illusion brought about by combination
of the power law and a weak cutoff. This contrasts with
the Genoa model, where, below the phase transition, the
power-law tails are genuine for all values of the parameter
g < gc.

The very existence of the phase transition in the Genoa
market model is a remarkable fact. It is intimately related
to the dependence of the tail exponent on g. When the
exponent drops to the value α = 1 the average return di-
verges and the transition occurs. One could speculate, how
the picture would change if the feedback between volatility
and order placement was defined differently. For example,
the volatility can be defined through squares of returns,
instead of absolute returns. This would also sound more
natural, we think. We expect that in this case the tran-
sition would be related to the divergence of the second
moment of the return distribution, i.e. it would be located
at such parameter values which would imply the exponent
α = 2. Otherwise, the picture would be most probably the
same.

There is one feature, not so much important as such,
but showing that the free Stigler model, Genoa stock mar-
ket and Maslov model are members of the same family. If
we look at the return distribution at small returns, we find
that Genoa stock market and Maslov model (see Ref. [59])
exhibit another power-law regime, with very small expo-
nent 1 + α � 0.5. Clearly it is the sign that deep within
the bunch of orders surrounding the price the two models
behave just like the free Stigler model, which shows the
same power law in entire range of returns.

The return distribution in the Maslov model without
evaporation has a very important and appealing feature.
Its is the scaling property. The returns at different time
lags scale with Hurst exponent equal to H = 1/4. Quali-
tatively it agrees with the empirically found scaling, but,
unfortunately, quantitatively it is completely off. An im-
portant finding is that the evaporation of orders destroys
the scaling, which is also absent in the UDM model. On
the contrary, we also observed scaling in the Genoa mar-
ket model, but not a perfect one. The difference between
different lags is in the (not so much important, after all)
low-return range, where the power-law tail is not yet de-
veloped.

When we want to compare the volatility clustering
measured through the autocorrelation of absolute returns,
we exclude the BPS model. Due to rather long waiting

times, the measurement of the autocorrelation was im-
practical. In all remaining models, we found slow decay
of the autocorrelations, but the functional form was not
always a power. In fact, there are two exceptions. In the
Genoa market model, the decay is exponential, although
very slow. In UDM, the decay is faster than any power-law
but slower than an exponential. A stretched exponential
may be perhaps the candidate. In the remaining models,
the power-law decay is observed. The difference lies in the
exponent. While in the Stigler and free Stigler model, the
exponent is above 1, in the Maslov model, both with and
without evaporation, the value lies at or close to 1/2.

A crucial conclusion from the above is, that we cannot
simply pick a model (“the best one”) from those studied
here and apply it directly for a stock-market practice, e.g.
for option pricing. All the models need some extensions
or modifications to serve well as a realistic description.
In this work we had no intent to amend the models by
gluing together ad hoc parts with the only scope to get
exponents right. We consider that counter-productive. If a
simple, bare model is not satisfactory, one should look for
another one, preferably as simple as the first one. That is
why we strove to compare “bare” models here. To express
our feeling, the models which passed the tests with high-
est scores were the Genoa market model and the Maslov
model, with some (but not too much) evaporation of or-
ders. We must also note that the empirical model of ref-
erence [66] reproduces the data for return distribution by
far the best accuracy. At the same time, though, it makes
use of several empirical inputs, rather than clear micro-
scopic mechanisms, and therefore follows somewhat dif-
ferent modelling philosophy than ours. That is why we
leave this model aside, without neglecting its merits and
importance.

To sum up, we compared several order-book models
of stock-market fluctuations. None of them is fully satis-
factory yet. Calculating the return distribution, volatility
autocorrelation and the Hurst plot, we were able to iden-
tify which of the models are promising candidates for fu-
ture development. To tell the names, they are the Genoa
market model and the Maslov model.

This work was supported by the MŠMT of the Czech Republic,
grant no. 1P04OCP10.001, and by the Research Program CTS
MSM 0021620845.
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